登入
選單
返回
Google圖書搜尋
The Siegel Modular Variety of Degree Two and Level Four/Cohomology of the Siegel Modular Group of Degree Two and Level Four
Ronnie Lee
Steven H. Weintraub
Jerome William Hoffman
出版
American Mathematical Soc.
, 1998
主題
Mathematics / Calculus
Mathematics / Geometry / Algebraic
Mathematics / Topology
ISBN
0821806203
9780821806203
URL
http://books.google.com.hk/books?id=14LTCQAAQBAJ&hl=&source=gbs_api
EBook
SAMPLE
註釋
The Siegel Modular Variety of Degree Two and Level Four is by Ronnie Lee and Steven H. Weintraub: Let $\mathbf M_n$ denote the quotient of the degree two Siegel space by the principal congruence subgroup of level $n$ of $Sp_4(\mathbb Z)$. $\mathbfM_n$ is the moduli space of principally polarized abelian surfaces with a level $n$ structure and has a compactification $\mathbfM^*_n$ first constructed by Igusa. $\mathbfM^*_n$ is an almost non-singular (non-singular for $n> 1$) complex three-dimensional projective variety (of general type, for $n> 3$). The authors analyze the Hodge structure of $\mathbfM^*_4$, completely determining the Hodge numbers $h^{p,q} = \dim H^{p,q}(\mathbfM^*_4)$. Doing so relies on the understanding of $\mathbfM^*_2$ and exploitation of the regular branched covering $\mathbfM^*_4 \rightarrow \mathbfM^*_2$.""Cohomology of the Siegel Modular Group of Degree Two and Level Four"" is by J. William Hoffman and Steven H. Weintraub. The authors compute the cohomology of the principal congruence subgroup $\Gamma_2(4) \subset S{_p4} (\mathbb Z)$ consisting of matrices $\gamma \equiv \mathbf 1$ mod 4. This is done by computing the cohomology of the moduli space $\mathbfM_4$. The mixed Hodge structure on this cohomology is determined, as well as the intersection cohomology of the Satake compactification of $\mathbfM_4$.