登入
選單
返回
Google圖書搜尋
Contributions of the Deltoid and Rotator Cuff to Shoulder Mobility and Stability
Joshua Dale Webb
其他書名
A 3D Finite Element Analysis
出版
Stanford University
, 2011
ISBN
STANFORD:cy150tn9705
URL
http://books.google.com.hk/books?id=3uBGIqA7CWkC&hl=&source=gbs_api
EBook
SAMPLE
註釋
The shoulder bones provide few constraints on motion. Therefore, stability must be maintained by muscles and ligaments. Shoulder mobility allows versatility of function, but makes the shoulder prone to injury. A better understanding of the role of muscle in shoulder mechanics is needed to improve the treatment of shoulder injuries and pathologies. Computational models provide a valuable framework for characterizing joint mechanics. Previous shoulder models have used simple representations of muscle architecture and geometry that may not capture the details needed to fully understand muscle function. The purpose of this dissertation was to create a detailed 3D finite element model of the deltoid and the four rotator cuff muscles. This model was then used to characterize the muscle contributions to joint motion and stability. The model was constructed from magnetic resonance images of a healthy shoulder. From the images, the 3D geometry of the muscles, tendons and bones was acquired. A finite element mesh was constructed and the 3D trajectories of the muscle fibers were mapped onto the finite element mesh. A hyperelastic, transversely-isotropic material model was used to represent the nonlinear stress-strain relationship of muscle. Bone motions were prescribed and the resulting muscle deformations were simulated using an implicit finite element solver. To characterize muscle contributions to joint motion, we calculated moment arms for each modeled muscle fiber. We found that 3D models predicted substantial variability in moment arms across fibers within each muscle, which is not generally represented in line segment models. We also discovered that for muscles with large attachment regions, such as deltoid, the line segment models under constrained the muscle paths in some cases. As a result, line segment based moment arms changed more with joint rotation than moment arms predicted by the 3D models. Glenohumeral instability is common, and difficult to treat. To better understand the mechanics of instability we used the 3D model to investigate the role of the muscles in stabilizing the glenohumeral joint by simulating joint translations. We found that at the neutral position, anterior deltoid provides the largest potential to resist anterior translation which counters the conclusions of conventional line segment models. This is the result of compression generated by muscle contact, which must be considered when characterizing the ability of muscle to resist joint translation. This dissertation provides a new computational method for analyzing shoulder mechanics, and demonstrates the importance of 3D analysis when investigating the complex function of shoulder muscles.