登入選單
返回Google圖書搜尋
Unitary Symmetry and Combinatorics
註釋This monograph integrates unitary symmetry and combinatorics, showing in great detail how the coupling of angular momenta in quantum mechanics is related to binary trees, trivalent trees, cubic graphs, MacMahon's master theorem, and other basic combinatorial concepts. A comprehensive theory of recoupling matrices for quantum angular momentum is developed. For the general unitary group, polynomial forms in many variables called matrix Schur functions have the remarkable property of giving all irreducible representations of the general unitary group and are the basic objects of study. The structure of these irreducible polynomials and the reduction of their Kronecker product is developed in detail, as is the theory of tensor operators.