登入
選單
返回
Google圖書搜尋
Web Data Mining
Bing Liu
其他書名
Exploring Hyperlinks, Contents, and Usage Data
出版
Springer Science & Business Media
, 2007
主題
Computers / Artificial Intelligence / General
Computers / Artificial Intelligence / Computer Vision & Pattern Recognition
Computers / Database Administration & Management
Computers / Data Science / Data Analytics
Computers / System Administration / Storage & Retrieval
Computers / Business & Productivity Software / Databases
Mathematics / Probability & Statistics / General
ISBN
3540378812
9783540378815
URL
http://books.google.com.hk/books?id=6Mh50Uaq6AIC&hl=&source=gbs_api
EBook
SAMPLE
註釋
The rapid growth of the Web in the last decade makes it the largest p- licly accessible data source in the world. Web mining aims to discover u- ful information or knowledge from Web hyperlinks, page contents, and - age logs. Based on the primary kinds of data used in the mining process, Web mining tasks can be categorized into three main types: Web structure mining, Web content mining and Web usage mining. Web structure m- ing discovers knowledge from hyperlinks, which represent the structure of the Web. Web content mining extracts useful information/knowledge from Web page contents. Web usage mining mines user access patterns from usage logs, which record clicks made by every user. The goal of this book is to present these tasks, and their core mining - gorithms. The book is intended to be a text with a comprehensive cov- age, and yet, for each topic, sufficient details are given so that readers can gain a reasonably complete knowledge of its algorithms or techniques without referring to any external materials. Four of the chapters, structured data extraction, information integration, opinion mining, and Web usage mining, make this book unique. These topics are not covered by existing books, but yet they are essential to Web data mining. Traditional Web mining topics such as search, crawling and resource discovery, and link analysis are also covered in detail in this book.