登入選單
返回Google圖書搜尋
Théories Asymptotiques Et Équations de Painlevé
註釋The major part of this volume is devoted to the study of the sixth Painleve equation through a variety of approaches, namely elliptic representation, the classification of algebraic solutions and so-called ``dessins d'enfants'' deformations, affine Weyl group symmetries and dynamics using the techniques of Riemann-Hilbert theory and those of algebraic geometry. Discrete Painleve equations and higher order equations, including the mKdV hierarchy and its Lax pair and a WKB analysis of perturbed Noumi-Yamada systems, are given a place of study, as well as theoretical settings in Galois theory for linear and non-linear differential equations, difference and $q$-difference equations with applications to Painleve equations and to integrability or non-integrability of certain Hamiltonian systems.