登入選單
返回Google圖書搜尋
Finite Element Analysis of Dental Implant-bone System During and After Implantation
註釋Abstract : Development of an ideal substitute for missing teeth has been a major aim of dental practitioners for millennia. Modern dental implants are biocompatible screw-like titanium 'fixtures' that are surgically placed into the jaws to replace missing teeth. Implants are superior to conventional prostheses, in both function and long-term predictability. In 2006 approximately 30,000 implants were placed in Australian patients. Implant sales have doubled in the last 5 years and are increasing by about 15% per year. Although implants exhibit excellent long-term retention (~95% after 5 years), there are significantly more failures in areas where bone quality and quantity is poor, resulting in poor patient outcomes and costs estimated at $15 million per year in Australia. Most failures arise from poor clinical technique and inadequate understanding of the potentially damaging stress characteristics during implant placement and function (chewing). Three-dimensional (3D) Finite Element Analysis (FEA) is a numerical method for analysing stresses and deformations in structures of any given geometry and under any load. There are reports on utilising 3D FEA to investigate implant-jawbone interactions after full osseointegration. However no work has been done to comprehensively quantify the performance of the bone-implant system during and after implantation. This research thus aims to develop a comprehensive FEA technique to evaluate the performance of the bone-implant system during the implantation process itself, as well as the healing and maintenance phases of osseointegration.