登入選單
返回Google圖書搜尋
Entstehung von Aerosolteilchen durch Nukleation: Schwefelsäure, Cluster und Partikel-Bildungsraten : kumulative Habilitationsschrift
註釋Aerosolteilchen agieren als Kondensationskeime für Wolkentröpfchen (engl. Cloud Condensation Nuclei, CCN) oder Eiskristalle und sind deswegen für die Wolken- und Niederschlagsbildung entscheidend. Sowohl die Aerosolpartikel als auch die Wolken können Sonnenlicht effizient streuen, wodurch ein kühlender Effekt auf das Klima ausgeübt wird. Einige der Teilchen, wie z. B. aufgewirbelter Staub oder Seesalz, werden direkt in die Atmosphäre injiziert; der größte Anteil der Teilchen und etwa die Hälfte der CCN werden allerdings durch die Kondensation gasförmiger Substanzen gebildet. Dieser Prozess wird als Nukleation oder Partikelneubildung (engl. New Particle Formation, NPF) bezeichnet. Trotz intensiver Forschung ist die NPF noch nicht vollständig verstanden, was an der Komplexität der chemischen Abläufe in der Atmosphäre und an der Schwierigkeit liegt, die relevanten Substanzen bei extrem geringen Mischungsverhältnissen (etwa ein Molekül oder Cluster per 1012 bis 1015 Moleküle) zu identifizieren und zu quantifizieren. Neben der Frage nach den bei der Nukleation beteiligten Substanzen ist außerdem noch unklar, ob Ionen-induzierte Nukleation ein wichtiger Prozess für das Klima ist. Das CLOUD-Projekt (Cosmics Leaving OUtdoor Droplets) am CERN soll diesen Fragen nachgehen, indem dort die Partikelbildung in einem Kammer-Experiment unter extrem gut kontrollierten Bedingungen simuliert wird. Die chemischen Systeme, die in dieser Schrift diskutiert werden, umfassen das binäre (H2SO4-H2O), das ternäre Ammoniak (H2SO4-H2O-NH3) und das ternäre Dimethylamin (H2SO4-H2O-(CH3)2NH) System. Einige der wesentlichen Ergebnisse von Experimenten an der CLOUD-Kammer werden diskutiert. Diese zeigen, dass das binäre und das ternäre Ammoniak System die atmosphärische Nukleation bei niedrigen Temperaturen erklären können, wohingegen das ternäre Dimethylamin System prinzipiell in der Lage ist, die hohen bodennahen Nukleationsraten bei atmosphärisch relevanten Schwefelsäure-Konzentrationen zu beschreiben. Des Weiteren werden zwei für Nukleationsstudien wesentliche Messmethoden vorgestellt. Das Chemical Ionization Mass Spectrometer (CIMS) wird zur Messung von gasförmiger Schwefelsäure verwendet, da H2SO4 vermutlich die wichtigste Substanz bei der atmosphärischen Nukleation ist. Das Chemical Ionization-Atmospheric Pressure interface-Time Of Flight (CI-APi-TOF) Massenspektrometer misst Schwefelsäure und neutrale Cluster. Beide Geräte wurden für den Einsatz bei CLOUD optimiert und instrumentelle Entwicklungen wurden in Bezug auf die Ionenquelle vorgenommen, die eine Korona-Entladung verwendet. Außerdem wurden eine Kalibrationseinheit zur Bereitstellung definierter Schwefelsäure-Konzentrationen entwickelt und das CI-APi-TOF aufgebaut. In Bezug auf das ternäre Dimethylamin System werden Nukleationsraten und die ersten Messungen von gro en nukleierenden neutralen Clustern präsentiert. Monomer- und Dimer-Konzentrationen der Schwefelsäure, die mit dem CIMS bei tiefen Temperaturen gemessen wurden, dienten der Ableitung der thermodynamischen Eigenschaften bei der Dimer-Bildung im binären und ternären Ammoniak System. Um möglichst exakte Nukleationsraten zu bestimmen, wurde eine neue Methode entwickelt, die es erlaubt, den Effekt der Selbst-Koagulation bei der Nukleation miteinzubeziehen. Die zusammengefassten Studien tragen signifikant zum Verständnis der Partikelneubildung bei.