登入
選單
返回
Google圖書搜尋
The Plaston Concept
Isao Tanaka
Nobuhiro Tsuji
Haruyuki Inui
其他書名
Plastic Deformation in Structural Materials
出版
Springer Nature
, 2022
ISBN
9811677158
9789811677151
URL
http://books.google.com.hk/books?id=ExdbEAAAQBAJ&hl=&source=gbs_api
EBook
SAMPLE
註釋
Intro -- Preface -- Contents -- Part I Introduction -- 1 Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals -- 1.1 Introduction -- 1.2 Reason of Strength-Ductility Trade-Off, and Mechanical Properties of Typical Bulk Nanostructured Metals -- 1.3 Bulk Nanostructured Metals Exhibiting Both High Strength and Large Ductility -- 1.4 Proposing the Concept of Plaston and a Strategy to Overcome Strength-Ductility Trade-Off -- 1.5 Conclusions -- References -- Part II Simulation of Plaston and Plaston Induced Phenomena -- 2 Free-energy-based Atomistic Study of Nucleation Kinetics and Thermodynamics of Defects in Metals -- Plastic Strain Carrier ``Plaston'' -- 2.1 Introduction -- 2.2 Shuffling Dominant {10bar12} langle10bar1bar1rangle Deformation Twinning in Hexagonal Close-Packed Magnesium (ch2Ishii16) -- 2.3 Dislocation Nucleation from GBs (ch2Junping16) -- 2.4 Homogeneous Dislocation Nucleation in Nanoindentation (ch2Sato19) -- 2.5 Summary -- References -- 3 Atomistic Study of Disclinations in Nanostructured Metals -- 3.1 Introduction -- 3.1.1 Various Deformation Modes in Nanostructured Metals -- 3.1.2 Disclinations -- 3.2 Grain Subdivision: Disclinations in Grains -- 3.2.1 Strain Gradients in Severe Plastic Deformation Processes -- 3.2.2 Grain Subdivision by Severe Plastic Deformation -- 3.2.3 Partial Disclinations Induced by the Strain Gradient -- 3.3 Fracture Toughness: Disclinations at the Grain Boundary -- 3.3.1 High Strength and High Toughness -- 3.3.2 Dislocation Emission from the Grain Boundary -- 3.3.3 Intragranular Crack -- 3.3.4 Intergranular Crack -- 3.4 Conclusion -- References -- 4 Collective Motion of Atoms in Metals by First Principles Calculations -- 4.1 Introduction.