登入選單
返回Google圖書搜尋
A Method of Application of Elastic-Plastic Fracture Mechanics to Nuclear Vessel Analysis
註釋The primary purpose of this work was to develop analytical relationships which could be used to assess the safety of irradiated nuclear reactor pressure vessels against unstable fracture. The need for such a calculation occurs when the Charpy uppershelf energy of the vessel steel is predicted to fall below the required 50 ft • lb (67.8 J) level from accumulated neutron radiation damage. The method used was based on "tearing instability" concepts under "J-controlled growth" conditions for the crack stability criterion. The aforementioned purpose was served by developing fracture mechanics methods of wider applicability than previously available and applying them in analyses at uppershelf conditions (above the transition temperature). Elastic-plastic fracture mechanics concepts were used to extend recognized linear elastic fracture mechanics flaw analysis equations for through-the-thickness flaws and surface flaws into the plastic range. The approach also made use of J-R curve characterization of the material fracture resistance.