登入
選單
返回
Google圖書搜尋
The Foundations of Topological Graph Theory
C.Paul Bonnington
Charles H.C. Little
出版
Springer Science & Business Media
, 2012-12-06
主題
Mathematics / Combinatorics
Mathematics / General
ISBN
146122540X
9781461225409
URL
http://books.google.com.hk/books?id=GtjiBwAAQBAJ&hl=&source=gbs_api
EBook
SAMPLE
註釋
This is not a traditional work on topological graph theory. No current graph or voltage graph adorns its pages. Its readers will not compute the genus (orientable or non-orientable) of a single non-planar graph. Their muscles will not flex under the strain of lifting walks from base graphs to derived graphs. What is it, then? It is an attempt to place topological graph theory on a purely combinatorial yet rigorous footing. The vehicle chosen for this purpose is the con cept of a 3-graph, which is a combinatorial generalisation of an imbedding. These properly edge-coloured cubic graphs are used to classify surfaces, to generalise the Jordan curve theorem, and to prove Mac Lane's characterisation of planar graphs. Thus they playa central role in this book, but it is not being suggested that they are necessarily the most effective tool in areas of topological graph theory not dealt with in this volume. Fruitful though 3-graphs have been for our investigations, other jewels must be examined with a different lens. The sole requirement for understanding the logical development in this book is some elementary knowledge of vector spaces over the field Z2 of residue classes modulo 2. Groups are occasionally mentioned, but no expertise in group theory is required. The treatment will be appreciated best, however, by readers acquainted with topology. A modicum of topology is required in order to comprehend much of the motivation we supply for some of the concepts introduced.