登入選單
返回Google圖書搜尋
Nonlinear Dynamics of Josephson Junction Chains and Superconducting Resonators
註釋This thesis presents the results of the experimental studies on two kind of Superconducting circuits: one-dimensional Josephson junction chains andsuperconducting coplanar waveguide (CPW) resonators. One-dimensionalJosephson junction chains are constructed by connecting many Superconducting quantum interference devices (SQUIDs) in series. We have studied DC transport properties of the SQUID chains and model their nonlineardynamics with Thermally Activated Phase-Slips (TAPS). Experimental andsimulated results showed qualitative agreement revealing the existence of auniform phase-slipping and phase-sticking process which results in a voltage-independent current on the dissipative branch of the current-voltage char-acteristics (IVC). By modulating the effective Josephson coupling energy ofthe SQUIDs (EJ ) with an external magnetic field, we found that the ratio EJ /EC is a decisive factor in determining the qualitative shape of theIVC.