登入
選單
返回
Google圖書搜尋
Models and Optimization Methods for the Inventory-location-routing Problem
William Javier Guerrero Rueda
出版
2014
URL
http://books.google.com.hk/books?id=Kf0c0AEACAAJ&hl=&source=gbs_api
註釋
The problem of designing a supply chain including simultaneously routing and inventory management decisions is studied in this thesis. The objective is to select a subset of depots to open, the inventory policies for a 2-echelon system, and the set of routes to perform distribution from the upper echelon to the next using a homogeneous fleet of vehicles over a finite planning horizon. Demand is considered to be known. Applications are found in humanitarian logistics and military logistics. To solve the problem, two matheuristic procedures are developed. On the first part a cooperative algorithm combining exact methods for the supply chain design problem and routing heuristics is presented. On the second part, a partition is proposed using a Dantzig-Wolf reformulation on the routing variables. An hybridization between column generation, Lagrangian relaxation and local search is proposed in this part, put together as a heuristic method. Furthermore, results demonstrate the capability of the algorithms to compute high quality solutions and empirically estimate the improvement in the cost function of the proposed model when compared to a sequential optimization approach. Furthermore, results of the proposed methodologies on benchmark instances for subproblems are studied as well. Those are the capacitated location-routing problem, the inventory-routing problem, and the generalized elementary shortest path problem.