登入選單
返回Google圖書搜尋
Specific Cerebrovascular Risk Factors, Colon Microbiocenosis and Its Correction in Patients Receiving Long-Term Programmed Hemodialysis
註釋Introduction: The problem of acute and chronic cerebrovascular disorders in dialysis patients remains the most urgent. Risk factors for cerebrovascular diseases in CKD and dialysis patients can be conditionally divided into ,Äútraditional,Äù (arterial hypertension, diabetes mellitus, hypercholesterolemia) and ,Äúspecific,Äù (associated with renal pathology and dialysis procedures). The spectrum of specific factors of cerebrovascular risk in patients with dialysis stage of the CKD includes specific dialysis factors that form during programmed HD, as well as impaired phosphorus-calcium metabolism and calcification of the arterial microvasculature, increased blood levels of Œ≤2-microglobulin, homocysteine, malondialdehyde and superoxide dismutase, a decrease in the level of nitric oxide (II) metabolites, development of nephrogenic anemia and dysfunction of blood cells, malnutrition and dietary features of patients with renal pathology, accumulation of uremic toxins and toxins of intestinal bacteria, etc. Opportunistic gut microorganisms can produce uremic toxins, which are associated with an increased risk of inflammation, increased oxidative stress, and a higher risk of cardiovascular disease (CVD). Description of the spectrum of risk factors for cerebrovascular pathology in dialysis patients and effective control over them seems to be an effective strategy aimed at increasing the duration and quality of life in patients receiving renal replacement therapy. The aim of the investigation was to study the species composition of colon microbiocenosis in patients with CKD receiving programmed HD treatment and to evaluate the effectiveness of its correction using a new immobilized synbiotic. Materials and methods: Samples of colon microbiota from 62 patients undergoing programmed hemodialysis were studied before and after a course of diet therapy that included probiotic components, in particular, the immobilized synbiotic LB-complex L. Isolation of microorganisms was carried out according to our original method; for bacteria identification, a MALDI-TOF Autoflex speed mass spectrometer (Bruker Daltonik, Germany) was used in the Biotyper program mode. The results were assessed using the criteria proposed by the authors and based on the OST 91500.11.0004-2003. The efficacy of the immobilized synbiotic was determined based on the clinical data, questionnaires, and bacteriological tests. Results: In patients receiving programmed hemodialysis (before the start of the diet therapy), chronic moderate inflammation and azotemia were found. Dysbiotic changes in microbiocenosis were revealed in all the examined patients; in the absence or suppression of lacto- and bifidoflora, the number and diversity of Bacteroides spp., Clostridium spp., Collinsella spp., Eggerthella spp. and other bacteria increased, which was consistent with the theory of functional redundancy of gut microbiota. From the answers to the questionnaires, a decrease in the quality of life was found (up to 70 points out of 100) according to six of the eight scales used. After the combined therapy using the synbiotic LB-complex L in the study group, 56% of the examined patients showed their microbiocenosis restored to normal; no grade III dysbiosis was detected in any patient. There was a significant decrease in CRP and ESR in these patients and an improvement in the quality of life by criteria reflecting physical health. Conclusion: Acute/chronic CVD in patients with CKD of the pre-dialysis and dialysis periods are the most frequent and formidable complications. The spectrum of ,Äútraditional,Äù and ,Äúspecific,Äù CV risk factors in dialysis patients will be described in the chapter. Special attention will be paid to the intestinal microbiota and opportunistic intestinal microorganisms. The aim was to study the species composition of colon microbiocenosis in HD patients, and to evaluate the effectiveness of its correction using a new immobilized synbiotic. Materials and Methods. Samples of colon microbiota from 62 HD patients were studied before/after a course of diet therapy that included probiotic components, the immobilized synbiotic LB-complex L. MALDI-TOF Autoflex speed mass spectrometer was used in the Biotyper program mode. The efficacy of the immobilized synbiotic was determined based on the clinical data, questionnaires, and bacteriological tests. Results. Dysbiotic changes in microbiocenosis were revealed in all patients; in the absence/suppression of lacto-and bifidoflora, the number and diversity of Bacteroides spp.,Clostridium spp.,Collinsella spp.,Eggerthella spp. and other bacteria increased. After the combined therapy using the synbiotic LB-complex L in the study group, 56% of the examined patients showed their microbiocenosis restored to normal; no grade III dysbiosis was detected in any patient.