登入選單
返回Google圖書搜尋
Nonlinear Oxygen Transport with Poiseuille Hemodynamic Flow in a Micro-Channel
註釋In a recent paper by the authors, a well-known governing nonlinear PDE used to model oxygen transport was formulated in a generalized coordinate system where the Laplacian was expressed in metric tensor form. A reduction of the PDE to a simpler problem, subject to specific integrability conditions, was shown, and in the present work, a novel approximate analytical solution is obtained in terms of the degenerate Weierstrass P function using a compatibility relation through the factorization of the reduced almost linear ode and subject to similar boundary conditions for a microfluidic channel used in recent work by the authors. A specific form of the initial equation which was reduced has been used by Nair and coworkers describing the intraluminal problem of oxygen transport in large capillaries or arterioles and more recent work by the corresponding author describing the release of adenosine triphosphate (ATP) in micro-channels. In the present problem, a channel with a central core, rich in red blood cells, and with a thin plasma region near the boundary wall, free of RBCs is considered.