登入
選單
返回
Google圖書搜尋
Analysis of Lattice-Boltzmann Methods
Martin Rheinländer
其他書名
Asymptotic and Numeric Investigation of a Singularly Perturbed System
出版
GRIN Verlag
, 2007
主題
Mathematics / Calculus
Mathematics / Vector Analysis
Mathematics / Mathematical Analysis
ISBN
363879606X
9783638796064
URL
http://books.google.com.hk/books?id=RF9Mdxid-jUC&hl=&source=gbs_api
EBook
SAMPLE
註釋
Doctoral Thesis / Dissertation from the year 2007 in the subject Mathematics - Analysis, University of Constance (Fachbereich Mathematik & Statistik), 69 entries in the bibliography, language: English, abstract: Lattice-Boltzmann algorithms represent a quite novel class of numerical schemes, which are used to solve evolutionary partial differential equations (PDEs). In contrast to other methods (FEM, FVM), lattice-Boltzmann methods rely on a mesoscopic approach. The idea consists in setting up an artificial, grid-based particle dynamics, which is chosen such that appropriate averages provide approximate solutions of a certain PDE, typically in the area of fluid dynamics. As lattice-Boltzmann schemes are closely related to finite velocity Boltzmann equations being singularly perturbed by special scalings, their consistency is not obvious. This work is concerned with the analysis of lattice-Boltzmann methods also focusing certain numeric phenomena like initial layers, multiple time scales and boundary layers. As major analytic tool, regular (Hilbert) expansions are employed to establish consistency. Exemplarily, two and three population algorithms are studied in one space dimension, mostly discretizing the advection-diffusion equation. It is shown how these model schemes can be derived from two-dimensional schemes in the case of special symmetries. The analysis of the schemes is preceded by an examination of the singular limit being characteristic of the corresponding scaled finite velocity Boltzmann equations. Convergence proofs are obtained using a Fourier series approach and alternatively a general regular expansion combined with an energy estimate. The appearance of initial layers is investigated by multiscale and irregular expansions. Among others, a hierarchy of equations is found which gives insight into the internal coupling of the initial layer and the regular part of the solution. Next, the consistency of the model algorithms is considered followed by