登入
選單
返回
Google圖書搜尋
Optimizing Paired Kidney Transplant by Applying Machine Learning
Prakash Teknarayan Jha
出版
University of Toledo
, 2011
URL
http://books.google.com.hk/books?id=Rk-4AQAACAAJ&hl=&source=gbs_api
註釋
In this research a tree-based machine learning algorithm has been used to build a robust mechanism that optimizes paired kidney transplants in a very proficient manner. The system predicts how good or bad a specific kidney transplant match is. The system successfully classifies and predicts donor-quality. Potential donors were classified into categories based on numeric attributes generated. Based on these numeric attributes, potential donors were classified into linguistic variables such as Good, Average and Bad. To choose the data mining technique to be employed by the system, several algorithms such as J48 (tree-based machine learning algorithm), JRip (rule-based machine learning algorithm) and SMO (Sequential minimal optimization) were considered. It was found that J48 was the better choice of all the three. The donor-classification was based on donor parameters such as age, HLA A, HLA B, HLA DR, center, CMV, EBV and blood group. The system is built using JAVA, SQL and Weka (a machine learning suite). The system also provides a visual mode of communication for doctors and surgeons to consider key factors like donor quality and donor blood group before carrying out a transplant. This feature also facilitates the doctors' decision-making, as to where should a chain of transplants be broken so as to ensure better and desired results as well as to provide more leads to feasible transplant chains in the future. The system developed has an accuracy of 97.18% which was generated by correctly classified instances by J48 and a promising 0.9567 kappa statistic achieved by J48. This statistic is a measure to assess the decision making capability of the system built in comparison to a real physician. The predicted donor quality was then incorporated into a matching system where possible matches were visually displayed as optimal matches and other top matches. The optimal matches also showed every donor's blood group and donor quality, which are important in making transplant decisions.