登入選單
返回Google圖書搜尋
Additive Runge-Kutta Schemes for Convection-diffusion-reaction Equations
註釋Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N=2, additive Runge-Kutta ARK methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK methods have vanishing stability functions for very large values of the stiff scaled eigenvalue and retain high stability efficiency in the absence of stiffness.