登入
選單
返回
Google圖書搜尋
Functional Principal Component Analysis for Derivatives of Multivariate Curves
Maria Grith
Wolfgang K. Härdle
Alois Kneip
Heiko Wagner
出版
Humboldt-Universität zu Berlin
, 2016
URL
http://books.google.com.hk/books?id=UXfVzQEACAAJ&hl=&source=gbs_api
註釋
We present two methods based on functional principal component analysis (FPCA) for the estimation of smooth derivatives of a sample of random functions, which are observed in a more than one-dimensional domain.We apply eigenvalue decomposition to a) the dual covariance matrix of the derivatives, and b) the dual covariance matrix of the observed curves. To handle noisy data from discrete observations, we rely on local polynomial regressions. If curves are contained in a finite-dimensional function space, the secondmethod performs better asymptotically. We apply our methodology in a simulation and empirical study, inwhichwe estimate state price density (SPD) surfaces from call option prices.We identify three main components, which can be interpreted as volatility, skewness and tail factors.We also find evidence for term structure variation.