登入
選單
返回
Google圖書搜尋
Defect Detection in Infrared Thermography by Deep Learning Algorithms
Qiang Fang
出版
Université Laval
, 2021
URL
http://books.google.com.hk/books?id=V4bPzgEACAAJ&hl=&source=gbs_api
註釋
L'évaluation non destructive (END) est un domaine permettant d'identifier tous les types de dommages structurels dans un objet d'intérêt sans appliquer de dommages et de modifications permanents. Ce domaine fait l'objet de recherches intensives depuis de nombreuses années. La thermographie infrarouge (IR) est l'une des technologies d'évaluation non destructive qui permet d'inspecter, de caractériser et d'analyser les défauts sur la base d'images infrarouges (séquences) provenant de l'enregistrement de l'émission et de la réflexion de la lumière infrarouge afin d'évaluer les objets non autochauffants pour le contrôle de la qualité et l'assurance de la sécurité. Ces dernières années, le domaine de l'apprentissage profond de l'intelligence artificielle a fait des progrès remarquables dans les applications de traitement d'images. Ce domaine a montré sa capacité à surmonter la plupart des inconvénients des autres approches existantes auparavant dans un grand nombre d'applications. Cependant, en raison de l'insuffisance des données d'entraînement, les algorithmes d'apprentissage profond restent encore inexplorés, et seules quelques publications font état de leur application à l'évaluation non destructive de la thermographie (TNDE). Les algorithmes d'apprentissage profond intelligents et hautement automatisés pourraient être couplés à la thermographie infrarouge pour identifier les défauts (dommages) dans les composites, l'acier, etc. avec une confiance et une précision élevée. Parmi les sujets du domaine de recherche TNDE, les techniques d'apprentissage automatique supervisées et non supervisées sont les tâches les plus innovantes et les plus difficiles pour l'analyse de la détection des défauts. Dans ce projet, nous construisons des cadres intégrés pour le traitement des données brutes de la thermographie infrarouge à l'aide d'algorithmes d'apprentissage profond et les points forts des méthodologies proposées sont les suivants: 1. Identification et segmentation automatique des défauts par des algorithmes d'apprentissage profond en thermographie infrarouge. Les réseaux neuronaux convolutifs (CNN) pré-entraînés sont introduits pour capturer les caractéristiques des défauts dans les images thermiques infrarouges afin de mettre en œuvre des modèles basés sur les CNN pour la détection des défauts structurels dans les échantillons composés de matériaux composites (diagnostic des défauts). Plusieurs alternatives de CNNs profonds pour la détection de défauts dans la thermographie infrarouge. Les comparaisons de performance de la détection et de la segmentation automatique des défauts dans la thermographie infrarouge en utilisant différentes méthodes de détection par apprentissage profond : (i) segmentation d'instance (Center-mask ; Mask-RCNN) ; (ii) détection d'objet (Yolo-v3 ; Faster-RCNN) ; (iii) segmentation sémantique (Unet ; Res-unet); 2. Technique d'augmentation des données par la génération de données synthétiques pour réduire le coût des dépenses élevées associées à la collecte de données infrarouges originales dans les composites (composants d'aéronefs.) afin d'enrichir les données de formation pour l'apprentissage des caractéristiques dans TNDE; 3. Le réseau antagoniste génératif (GAN convolutif profond et GAN de Wasserstein) est introduit dans la thermographie infrarouge associée à la thermographie partielle des moindres carrés (PLST) (réseau PLS-GANs) pour l'extraction des caractéristiques visibles des défauts et l'amélioration de la visibilité des défauts pour éliminer le bruit dans la thermographie pulsée; 4. Estimation automatique de la profondeur des défauts (question de la caractérisation) à partir de données infrarouges simulées en utilisant un réseau neuronal récurrent simplifié : Gate Recurrent Unit (GRU) à travers l'apprentissage supervisé par régression.