登入
選單
返回
Google圖書搜尋
Large Deviations for Stochastic Processes
Jin Feng
Thomas G. Kurtz
出版
American Mathematical Soc.
, 2006
主題
Mathematics / Probability & Statistics / General
Mathematics / Probability & Statistics / Stochastic Processes
Mathematics / Functional Analysis
ISBN
0821841459
9780821841457
URL
http://books.google.com.hk/books?id=VYvzBwAAQBAJ&hl=&source=gbs_api
EBook
SAMPLE
註釋
The book is devoted to the results on large deviations for a class of stochastic processes. Following an introduction and overview, the material is presented in three parts. Part 1 gives necessary and sufficient conditions for exponential tightness that are analogous to conditions for tightness in the theory of weak convergence. Part 2 focuses on Markov processes in metric spaces. For a sequence of such processes, convergence of Fleming's logarithmically transformed nonlinear semigroups is shown to imply the large deviation principle in a manner analogous to the use of convergence of linear semigroups in weak convergence. Viscosity solution methods provide applicable conditions for the necessary convergence. Part 3 discusses methods for verifying the comparison principle for viscosity solutions and applies the general theory to obtain a variety of new and known results on large deviations for Markov processes. In examples concerning infinite dimensional state spaces, new comparison principles are de