登入選單
返回Google圖書搜尋
Surface-cycling of Rhenium and Its Isotopes
註釋The application of elemental and isotopic metal palaeoredox tracers to the geologic past rests on an understanding of modern metal cycles. This study reevaluates the surface-cycling of Mo and Re in near-surface reservoirs. Revised river averages of Mo and Re are 1.8- and 7.9-fold larger than previous estimates. The river concentrations of 8.0 nmol Mo kg-1 and 11.2 pmol Re kg- (pre-anthropogenic), result in shorter seawater response times of 4.4 x 105 yr ([Tau]Mo) and 1.3 x 105 yr ([Tau]Re pre-anthropogenic). These metals, especially Re, are more sensitive to changing source and sink fluxes than previously thought. Evaluation of Mo and Re concentrations in high temperature fluids from the Manus Basin indicate that Re is essentially absent from the hydrothermal end member and Mo is present at concentrations considerably lower than ambient seawater. The sink fluxes represented by hydrothermal circulation are negligible in comparison to the revised river source fluxes. Anthropogenic contributions to the Re flux to seawater are seen in the high concentrations of certain impacted water samples such as those associated with mining sites. It may also be seen in a significant, variable, Re enrichment feature in the Hudson River estuary. This Re enrichment feature is not the result of estuarine mixing or the remobilization of sediment-hosted Re. On the basis of a Re - SO2- correlation we are able to quantify and correct for the anthropogenic Re, which corresponds to ~33% of the modern river average. This study documents the development of an analytical method for stable Re isotopes.