登入選單
返回Google圖書搜尋
註釋Cross-section measurements were made of prompt gamma-ray production as a function of incident neutron energy (E{sub n} = 1 to 35 MeV) on an enriched (95.6%) {sup 150}Sm sample. Energetic neutrons were delivered by the Los Alamos National Laboratory spallation neutron source located at the Los Alamos Neutron Science Center (LANSCE) facility. The prompt-reaction gamma rays were detected with the large-scale Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections taking into account the dead-time correction, target thickness, detector efficiency and neutron flux (monitored with an in-line fission chamber). Partial {gamma}-ray cross sections were predicted using the Hauser-Feshbach statistical reaction code GNASH. Above E{sub n} {approx} 8 MeV the pre-equilibrium reaction process dominates the inelastic reaction. The spin distribution transferred in pre-equilibrium neutron-induced reactions was calculated using the quantum mechanical theory of Feshbach, Kerman, and Koonin (FKK). These pre-equilibrium spin distributions were incorporated into a new version of GNASH and the {gamma}-ray production cross sections were calculated and compared with experimental data. The difference in the partial {gamma}-ray cross sections using spin distributions with and without pre-equilibrium effects is discussed.