登入
選單
返回
Google圖書搜尋
Recent Advances in Operator Theory
M. A. Kaashoek
André C. M. Ran
其他書名
The Israel Gohberg Anniversary Volume : International Workshop in Groningen, June 1998
出版
Springer Science & Business Media
, 2001
主題
Mathematics / General
Mathematics / Calculus
Mathematics / Functional Analysis
Medical / General
ISBN
3764365730
9783764365738
URL
http://books.google.com.hk/books?id=aVmFTAzg5skC&hl=&source=gbs_api
EBook
SAMPLE
註釋
On the spectral theory of degenerate quadratic operator pencils.- Two-sided tangential interpolation for Hilbert-Schmidt operator functions on polydisks.- Nonstationary analogs of the Herglotz representation theorem: realizations centered at an arbitrary point.- Characteristic functions of maximal sectorial operators.- Similarity between Krein space bicontractions and Hilbert space contractions.- Classification of cyclic invariant subspaces of Jordan operators.- Elliptic spectral problems of higher order with eigenparameter dependent boundary conditions.- About scattering on the ring.- Dilation of generalized Toeplitz kernels on lexicographic ? × R.- On Riccati equations and reproducing kernel spaces.- A status report on the asymptotic behavior of Toeplitz determinants with Fisher-Hartwig singularities.- On the spectrum of unbounded off-diagonal 2 × 2 operator matrices in Banach spaces.- Multithreshold spectral phase transitions for a class of Jacobi matrices.- Positive extensions and diagonally connected patterns.- Parametrized Furuta inequality and its applications.- J-symmetric factorizations and algebraic Riccati equations.- Scattering of waves by periodic gratings and factorization problems.- Corner of numerical ranges.- On some classes of extensions of sectorial operators and dual pairs of contractions.- Liftings of intertwining operators.- Some estimates for the resolvent and for the lengths of Jordan chains of an analytic operator function.- The Parrott problem for singular values.- Unconditional decompositions and Schur-type multipliers.- Scattering in a loop-shaped waveguide.- Pseudospectra of operator polynomials.