登入選單
返回Google圖書搜尋
Tropospheric and Ionospheric Effects on Global Navigation Satellite Systems
註釋Tropospheric and Ionospheric Effects on Global Navigation Satellite Systems

Explore atmospheric effects on radio frequency propagation in the context of Global Navigation Satellite System communication

In Tropospheric and Ionospheric Effects on Global Navigation Satellite Systems, a team of distinguished researchers deliver an accessible and authoritative introduction to all scientifically relevant effects caused by the ionosphere and troposphere on GNSS RF signals. The book explores the origin of each type of propagation effect and explains it from a fundamental physical perspective. Each of the major methods used for the measurement, prediction, and mitigation of ionospheric and tropospheric effects on GNSS are discussed in detail.

The authors also provide the mechanisms that drive ionization and plasma transport in the ionosphere, propagation phenomena (including scattering, absorption, and scintillations), and the predominant predictive models used to predict ionospheric propagation effects.

With an emphasis on global navigation satellite systems, the book discusses the US Standard Atmosphere, a general reference model for characteristics of the unionized atmosphere. It also considers:

  • Thorough introductions to the Global Positioning System and the principles of GNSS positioning
  • Comprehensive explorations of tropospheric propagation and predictive models of the troposphere
  • Practical discussions of the physics of the ionosphere, experimental observation of the ionosphere, and ionospheric propagation
  • In-depth examinations of predictive models of the ionosphere, including group delay models for single-frequency GNSS receivers

Ideal for engineers and research scientists with a professional or personal interest in geophysics, RF propagation, and GNSS and GPS applications, Tropospheric and Ionospheric Effects on Global Navigation Satellite Systems will also earn a place in the libraries of undergraduate and graduate students studying RF propagation or GNSS.