登入選單
返回Google圖書搜尋
On the Stabilizability for a Class of Linear Time-Invariant Systems Under Uncertainty
註釋

The uncertainty principle is one of themost important features in modeling and solving linear time-invariant (LTI) systems. The neutrality phenomena of some factors in real models have been widely recognized by engineers and scientists. The convenience

and flexibility of neutrosophic theory in the description and differentiation of uncertainty terms make it take advantage of modeling and designing of control systems. This paper deals with the controllability and stabilizability of LTI systems containing

neutrosophic uncertainty in the sense of both indeterminacy parameters and functional relationships.We define some properties and operators between neutrosophic numbers via horizontal membership function of a relative-distance-measure variable. Results on exponential matrices of neutrosophic numbers are well-defined with the notion et A deployed in a series of neutrosophic matrices. Moreover, we introduce the concepts of controllability and stabilizability of neutrosophic systems in the sense of Granular derivatives. Sufficient conditions to guarantee the controllability of neutrosophic LTI systems are established. Some numerical examples, related to RLC circuit and DC motor systems, are exhibited to illustrate the effectiveness of theoretical results.