登入選單
返回Google圖書搜尋
An Introduction to Classical Complex Analysis
註釋This book is an attempt to cover some of the salient features of classical, one variable complex function theory. The approach is analytic, as opposed to geometric, but the methods of all three of the principal schools (those of Cauchy, Riemann and Weierstrass) are developed and exploited. The book goes deeply into several topics (e.g. convergence theory and plane topology), more than is customary in introductory texts, and extensive chapter notes give the sources of the results, trace lines of subsequent development, make connections with other topics, and offer suggestions for further reading. These are keyed to a bibliography of over 1,300 books and papers, for each of which volume and page numbers of a review in one of the major reviewing journals is cited. These notes and bibliography should be of considerable value to the expert as well as to the novice. For the latter there are many references to such thoroughly accessible journals as the American Mathematical Monthly and L'Enseignement Mathématique. Moreover, the actual prerequisites for reading the book are quite modest; for example, the exposition assumes no prior knowledge of manifold theory, and continuity of the Riemann map on the boundary is treated without measure theory.