登入選單
返回Google圖書搜尋
New Statistical Methods to Assess the Effect of Time-dependent Exposures in Case-control Studies
註釋Background: Case-control studies are very often used by epidemiologists to assess the impact of specific exposure(s) on a particular disease. These exposures may be represented by several time-dependent covariates and new methods are needed to accurately estimate their effects. Indeed, conventional logistic regression, which is the standard method to analyze case-control data, does not directly account for changes in covariate values over time. By contrast, survival analytic methods such as the Cox proportional hazards model can directly incorporate time-dependent covariates representing the individual entire exposure histories. However, it requires some careful manipulation of risk sets because of the over-sampling of cases, compared to controls, in case-control studies. As shown in a preliminary simulation study, the optimal definition of risk sets for the analysis of case-control data remains unclear and has to be investigated in the case of time-dependent variables. Objective: The overall objective is to propose and to investigate new versions of the Cox model for assessing the impact of time-dependent exposures in case-control studies, and to apply them to a real case-control dataset on lung cancer and smoking. Methods: I identified some potential new risk sets definitions (the weighted Cox model and the simple weighted Cox model), in which different weights were given to cases and controls, in order to reflect the proportions of cases and non cases in the source population. The properties of the estimates of the exposure effects that result from these new risk sets definitions were investigated through a simulation study. Various aspects of exposure were generated (intensity, duration, cumulative exposure value). The simulated case-control data were then analysed using different versions of Cox's models corresponding to existing and new definitions of risk sets, as well as with standard logistic regression, for comparison purpose. The different regression models were then applied to real case-control data on lung cancer. The estimates of the effects of different smoking variables, obtained with the different methods, were compared to each other, as well as to simulation results. Results: The simulation results show that the estimates from the new proposed weighted Cox models, especially those from the weighted Cox model, are much less biased than the estimates from the existing Cox models that simply include or exclude future cases. In addition, the weighted Cox model was slightly, but systematically, less biased than logistic regression. The real life application shows some greater discrepancies between the estimates of the proposed Cox models and logistic regression, for some smoking time-dependent covariates. Conclusions: The results suggest that the new proposed weighted Cox models could be an interesting alternative to logistic regression for estimating the effects of time-dependent exposures in case-control studies.