登入選單
返回Google圖書搜尋
Designing Human-Swarm Interaction Systems
註釋

Swarms of Unmanned Aerial Vehicles (UAVs, or drones) are envisioned to transform various fields, from emergency response to law enforcement and military operations. Drone swarms provide scalable, adaptable, and decentralized solutions for dynamic work environments. However, the successful integration of these multi-agent systems into real-world settings presents significant challenges, particularly in terms of how humans can safely and effectively interact with and control these systems. Human-Swarm Interaction (HSI) aims to address these challenges by exploring how human operators can manage multiple drones in a cohesive manner, even under highly complex, uncertain conditions.

This thesis studies the problem of designing effective interaction mechanisms and interfaces for human operators to command drone swarms, specifically addressing challenges such as managing a large number of drones, supporting operators’ situational awareness, and balancing between centralized and decentralized control. The research highlights the necessity of rethinking conventional approaches by introducing alternative conceptual models, such as the "choir" metaphor, which re-imagines drone swarms as coordinated, semi-centralized ensembles rather than purely emergent, decentralized collectives. This metaphor aims to balance the collective, often unpredictable behavior of drone swarms with the predictable, directed actions needed in operational environments. By demonstrating how this metaphor can be operationalized in an HSI system architecture, the thesis provides new avenues for conceptualizing human interaction with autonomous systems.

Using a design research approach incorporating multiple-case study and scenario-based design activities to envision future swarm application in dialogue with prospective end users, the thesis develops and evaluates prototypes that embody these nuanced HSI concepts. The interface prototypes draw design inspiration from Real-Time Strategy (RTS) games. These elements include group commands, high-level mission planning, and resource pooling to create a hybrid interaction model that allows operators to maintain both a broad overview and precise control of multiple autonomous and collaborating drones. Domain expert evaluations of these prototypes in contexts such as firefighting and airport management validate the practical utility of these concepts.

The findings emphasize the value of adopting a Human-Technology-Organization (HTO) perspective in the design of HSI systems. Rather than focusing solely on the interaction between humans and technology, this systems-thinking approach acknowledges that drone swarms must be integrated into larger organizational frameworks, such as emergency response command structures or airport ground operations teams. It demonstrates that successful deployment requires accounting for the broader organizational context, including roles, workflows, and coordination needs. This holistic approach to HSI system design ensures that drone swarms not only meet technical performance criteria, such as reliability, responsiveness, and scalability, but also align with human and organizational needs, facilitating their adoption and effective use in a wide range of real-world scenarios. Ultimately, these contributions are intended to bridge the gap between theoretical models of swarm control and practical deployment, advancing both the field of HSI and the broader adoption of drone swarm technologies.

Svärmar av obemannade luftfarkoster (UAV, eller drönare) förväntas omvandla flera områden, exempelvis räddningsinsatser, brottsbekämpning, och militäroperationer. Drönarsvärmar innebar skalbara, anpassningsbara, och decentraliserade lösningar for dynamiska arbetsuppgifter. Den lyckade integreringen av dessa multi-agent-system i verkliga miljöer innebar dock betydande utmaningar, särskilt med avseende på hur människor säkert och effektivt interagerar med och kontrollerar dessa system. Forskningsfältet Människa-Svärm Interaktion (MSI) syftar till att möta dessa utmaningar genom att undersöka hur mänskliga operatorer kan hantera flera drönare på ett sammanhängande vis, även under komplexa och osäkra förhållanden.

Denna avhandling utreder problemet att utforma effektiva och säkra interaktionsmekanismer och gränssnitt for mänskliga operatorer att leda drönarsvärmar, specifikt genom att adressera utmaningar som att hantera ett stort antal drönare, stödja operatorers situationsmedvetenhet, och balansera mellan centraliserad och decentraliserad kontroll. Avhandlingen betonar vikten av att ifrågasatta konventionella tillvägagångssätt genom att introducera alternativa konceptuella modeller, såsom "kör"-metaforen, som omtolkar drönarsvärmar som koordinerade, semicentraliserade ensembler snarare än rent decentraliserade kollektiv. Denna metafor syftar till att balansera det kollektiva, ofta oförutsägbara beteendet hos drönarsvärmar med de förutsägbara, riktade handlingar som behövs i operativa miljöer. Genom att visa hur denna metafor kan operationaliseras i en MSI-systemarkitektur, erbjuder avhandlingen nya sätt att konceptualisera mänsklig interaktion med autonoma system.

Genom att tillämpa en designforskningsmetod som innefattar fallstudier och scenariobaserade designaktiviteter för att föreställa sig framtida svärmtillämpningar i dialog med potentiella slutanvändare, utvecklar och utvärderar avhandlingen prototyper som manifesterar dessa nyanserade MSI-koncept. Gränssnittens prototyper drar designinspiration från realtidsstrategispel (RTS). Dessa element inkluderar enhetshantering och kommandon på gruppnivå, strategisk uppdragsplanering, och resursdelning för att skapa en hybrid interaktionsmodell som gör det möjligt för operatörer att både bibehålla en bred lägesbild och utöva precis kontroll över flera autonoma och samverkande drönare. Domänexperters utvärderingar av dessa prototyper i arbetskontexter som brandbekämpning och flygplatsledning påvisar den praktiska användbarheten av dessa koncept.

Resultaten betonar värdet av att anta ett Människa-Teknik-Organisation (MTO)-perspektiv vid utformningen av MSI-system. Snarare än att enbart fokusera på interaktionen mellan människor och teknik, erkänner detta systemtänkande tillvägagångssätt att drönarsvärmar måste integreras i större organisatoriska ramar, såsom ledningsstrukturer for räddningsinsatser eller markoperativa team på flygplatser. Det visar att framgångsrik implementering av drönarsvärmar kräver att systemutvecklare tar hänsyn till det bredare organisatoriska sammanhanget, inklusive roller, arbetsflöden, och samverkansbehov. Detta holistiska tillvägagångssatt för utformningen av MSI-system säkerställer att drönarsvärmar inte bara uppfyller tekniska prestandakriterier, såsom tillförlitlighet, responsivitet, och skalbarhet, utan också överensstämmer med mänskliga och organisatoriska behov, vilket underlättar deras införande och effektiv användning i en mängd olika tillämpningsscenarier. Över lag är dessa forskningsbidrag avsedda att överbrygga gapet mellan teoretiska modeller för svärmstyrning och praktisk implementering, och därmed avancera och främja både MSI-området och den bredare användningen av svärmteknologier.