登入選單
返回Google圖書搜尋
Developing New Power Management and High-reliability Schemes in Data-intensive Environment
註釋With the increasing popularity of data-intensive applications as well as the large-scale computing and storage systems, current data centers and supercomputers are often dealing with extremely large data-sets. To store and process this huge amount of data reliably and energy-efficiently, three major challenges should be taken into consideration for the system designers. Firstly, power conservation--Multicore processors or CMPs have become a mainstream in the current processor market because of the tremendous improvement in transistor density and the advancement in semiconductor technology. However, the increasing number of transistors on a single die or chip reveals a super-linear growth in power consumption (4). Thus, how to balance system performance and power-saving is a critical issue which needs to be solved effectively. Secondly, system reliability--Reliability is a critical metric in the design and development of replication-based big data storage systems such as Hadoop File System (HDFS). In the system with thousands machines and storage devices, even in-frequent failures become likely. In Google File System, the annual disk failure rate is 2:88%, which means you were expected to see 8,760 disk failures in a year. Unfortunately, given an increasing number of node failures, how often a cluster starts losing data when being scaled out is not well investigated. Thirdly, energy efficiency--The fast processing speeds of the current generation of supercomputers provide a great convenience to scientists dealing with extremely large data sets. The next generation of "exascale" supercomputers could provide accurate simulation results for the automobile industry, aerospace industry, and even nuclear fusion reactors for the very first time. However, the energy cost of super-computing is extremely high, with a total electricity bill of 9 million dollars per year