登入選單
返回Google圖書搜尋
Evaluation of Ambiguity Success Rates Based on Multi-frequency GPS and Galileo
註釋This research work focuses on understanding the benefits of multi-frequency GPS and Galileo to its core. This was done by planning multiple scenarios of GNSS frequencies, GNSS combinations, atmospheric considerations, latitudinal variations and baseline orientations. With the aid of this multiple scenario simulation, an estimate for time taken for successful AR and the fixed-precision of parameters of interest obtained after successful AR could be computed for a range of possible situations. When a multi-GNSS scenario consisting of future GPS and Galileo was considered, there have been challenges while a mathematical model for multi-GNSS was being formed. The design of the multi-GNSS mathematical model accounted for the Inter System Biases (ISB\U+2019\s) which surface while different GNSS systems use the same reference satellite. While a rank defect between the ISB\U+2019\s and the ionosphere was detected, it was mitigated by choosing an appropriate S-Basis. To make the simulation software robust and realistic, accounting for setting and rising satellites and change of reference satellite was implemented. With the above considerations a multi-GNSS, multi-frequency simulation software was developed in MATLAB programming language. The results have been obtained based on assumption in the functional and stochastic models. In real practice unmodelled errors have an impact on ASR and time to fix the integer ambiguities to its correct solution due to multipath , insufficient knowledge of the stochastic model, etcetera.