登入
選單
返回
Google圖書搜尋
Flow stress model for Titanium Alloy Ti-6Al-4V in machining operations
Alejandro Martínez López
出版
2009
URL
http://books.google.com.hk/books?id=m7RMAQAACAAJ&hl=&source=gbs_api
註釋
Machining of titanium alloys is widely used in high-value added industries such as aerospace and medical devices. In this research, an extensive literature review was conducted on experimental and simulation investigations of Ti-6Al-4V machining. Using the findings of the review and applying a novel experimental technique (slotmilling test), an approach to determine the flow stress behavior for the Finite Element Modeling (FEM) of titanium machining was developed and implemented. An evaluation of the proposed model in this study is addressed using experimental data from literature and from slot-milling tests conducted during this research. The proposed flow stress model for Ti-6Al-4V shows good prediction capabilities in regards to chip morphology and cutting forces. The typical serrated chip found in titanium machining is reproduced in this research through FEM simulation and without the need of a damage criterion. This phenomenon can be reproduced through adiabatic softening captured by the developed constitutive model. The proposed flow stress model is based on a Johnson-Cook formulation and modified to use only 4 calibration parameters. Based on these results, FEM simulation is an effective tool for modeling of titanium (Ti-6Al-4V) machining, in order to minimize the use of costly experimentation. The applicability of the multi-scale modeling approach is also shown in this research. Dynamic stability of machining operations and FEM simulations are linked through a non-linear cutting force model. This research shows how FEM simulation in titanium alloys can be applied to generate the parameters of the non-linear cutting force model.