登入選單
返回Google圖書搜尋
Advances in Computational Intelligence
註釋Computational Intelligence (CI) is a recently emerging area in fundamental and applied research, exploiting a number of advanced information processing technologies that mainly embody neural networks, fuzzy logic and evolutionary computation. With a major concern to exploiting the tolerance for imperfection, uncertainty, and partial truth to achieve tractability, robustness and low solution cost, it becomes evident that composing methods of CI should be working concurrently rather than separately. It is this conviction that research on the synergism of CI paradigms has experienced significant growth in the last decade with some areas nearing maturity while many others remaining unresolved. This book systematically summarizes the latest findings and sheds light on the respective fields that might lead to future breakthroughs. Contents: A Quest for Granular Computing and Logic Processing (W Pedrycz); Abstraction and Linguistic Analysis of Conventional Numerical Dynamic Systems (F-Y Wang); Slicing: A Distributed Learning Approach (S A Eschrich & L O Hall); Marginal Learning Algorithms in Statistical Machine Learning (Q Tao & J Wang); Constraint Handling in Genetic Algorithm for Optimization (G G Yen); Hybrid PSO-EA Algorithm for Training Feedforward and Recurrent Neural Networks for Challenging Problems (X Cai et al.); Modular Wavelet-Fuzzy Networks (Y Lin & F-Y Wang); Ant Colony Algorithms: The State-of-the-Art (J Zhang et al.); Motif Discoveries in DNA and Protein Sequences Using Self-Organizing Neural Networks (D Liu & X Xiong); Computational Complexities of Combinatorial Problems with Applications to Reverse Engineering of Biological Networks (P Berman et al.); Advances in Fingerprint Recognition Algorithms with Application (J Tian et al.); Adaptation and Predictive Control Observed in Neuromuscular Control Systems (J He); Robust Adaptive Approximation Based Backstepping via Localized Adaptive Bounding (Y Zhao & J A Farrell); Dynamically Connected Fuzzy Single Input Rule Modules and Application to Underactuated Systems (J Yi et al.). Readership: Researchers, graduate and senior level undergraduate students in electrical & electronic engineering, computer engineering, neural networks, fuzzy logic and artificial intelligence.