登入選單
返回Google圖書搜尋
註釋CDX-U has been operated with the vacuum vessel wall and limiter surfaces nearly completely coated with lithium, producing dramatic improvements to plasma performance. Discharges achieved global energy confinement times up to 6 ms, exceeding previous CDX-U results by a factor of 5, and ITER98P(y,1) scaling by 2-3. Lithium wall coatings up to 1000 {angstrom} thick were applied between discharges by electron-beam-induced evaporation of a lithium-filled limiter and vapor deposition from a resistively heated oven. The e-beam power was modest (1.6 kW) but it produced up to 60 MW/m2 power density in a 0.3 cm{sup 2} spot; the duration was up to 300 s. Convective transport of heat away from the beam spot was so effective that the entire lithium inventory (140 g) was heated to evaporation (400-500 C) and there was no observable hot spot on the lithium surface within the beam footprint. These results are promising for use of lithium plasma-facing components in reactor scale devices. Lithium coating has also been applied to NSTX carbon plasma-facing surfaces, to control the density rise during long-duration H-modes for non-inductive current sustainment. First, lithium pellets were injected into sequences of Ohmically heated helium plasmas in both center stack limiter (CSL) and lower single-null divertor (LSND) configurations to deposit a total of 25-30 mg of lithium on the respective plasma contact areas. In both cases, the first subsequent L mode, deuterium discharge with NBI showed a reduction in the volume-average density by a factor {approx}3 compared to similar discharges before the lithium coating. Recently, a lithium evaporator was installed aimed toward the graphite tiles of the lower center stack and divertor. Twelve depositions, ranging from about 10 mg to 5 g of lithium, were performed. The effects on LSND L-mode, double-null divertor (DND) H-mode, and DND reversed-shear plasmas were variable but, immediately after coating, there were decreases in the density and significant increases in electron and ion temperature, neutron rate, confinement time, and edge flow velocity, and reductions in H-mode ELM frequency. For several days of operation after lithium coating, the ratio of oxygen to carbon emission was lower than with boronization.