登入選單
返回Google圖書搜尋
On the Fly Type Specialization Without Type Analysis
註釋Dynamically typed programming languages such as JavaScript and Python defer type checking to run time. In order to maximize performance, dynamic language virtual machine implementations must attempt to eliminate redundant dynamic type checks. This is typically done using type inference analysis. However, type inference analyses are often costly and involve tradeoffs between compilation time and resulting precision. This has lead to the creation of increasingly complex multi-tiered VM architectures. We introduce lazy basic block versioning, a simple just-in-time compilation technique which effectively removes redundant type checks from critical code paths. This novel approach lazily generates type-specialized versions of basic blocks on the fly while propagating context-dependent type information. This does not require the use of costly program analyses, is not restricted by the precision limitations of traditional type analyses and avoids the implementation complexity of speculative optimization techniques. Three extensions are made to the basic block versioning technique in order to give it interprocedural optimization capabilities. Typed object shapes give it the ability to attach type information to object properties and global variables. Entry point specialization allows it to pass type information from callers to callees, and call continuation specialization makes it possible to pass return value type information back to callers without dynamic overhead. We empirically demonstrate that these extensions enable basic block versioning to exceed the capabilities of static whole-program type analyses.