登入選單
返回Google圖書搜尋
Petri Net Based Modelling of Communication in Systems on Chip
註釋It is a key task of modern System-on-Chip (SoC) and Network-on-Chip (NoC) design to efficiently explore this design space regarding aspects like performance, flexibility and power consumption presumably in an early stage of the design flow in order to reduce design time and design costs. In this chapter several examples for modelling of on-chip communication using Petri Net based modelling techniques have been presented. These examples include modelling of internal processor communication and modelling of inter-processor communication using a crossbar switch fabric. For these examples deterministic and stochastic Petri Nets have been applied as modelling technique. More complex NoC communication has been modelled applying Coloured Petri Nets. The results obtained with all of these models were compared to those calculated on an FPGA based emulator. In all presented experiments the performance measures derived using these models showed a good precision compared to the results acquired using the FPGA based emulator. Furthermore, the Petri Net based results could be derived in attractively short modelling times with only moderate effort. Therefore, Petri Net based modelling of on-chip communication appears to be a very attractive approach to explore the design space of communication architectures in an early stage of the design process. DSPN based and CPN based modelling both provide specific advantages. DSPN models are suited for systems with moderate complexity such as communication systems with a small number of clients or bus based communication. The ease of modelling combined with the possibility of an analytical solution of the equations underlying the DSPN model provides a way to quickly obtain results. For more complex systems including a lot of data and complex functionalities, for example the addressing scheme and the routing algorithm in a NoC, CPN models are more adequate. DSPN based modelling of such systems is not as efficient since DSPNs do not provide a means of modelling data structures. As CPNs include data structures and allow to model complex behaviour in form of coloursets and transfer functions, CPN based modelling is well suited to analyze complex on-chip communication systems. Current topics in the field of NoC communication modelling to be addressed with Petri Net based methods are locating hotspots, analyzing quality-of-service aspects (data integrity, guaranteed service, etc.) and complex adaptive routing algorithms (incl. the checking of absence of deadlocks).