登入
選單
返回
Google圖書搜尋
Kinetics of O2 Reduction on Oxide-covered Ni-Cr-Mo Alloys
Xiangrong (Sarah) Zhang
出版
School of Graduate and Postdoctoral Studies, University of Western Ontario
, 2012
URL
http://books.google.com.hk/books?id=y9ldwAEACAAJ&hl=&source=gbs_api
註釋
Ni-Cr-Mo alloys exhibit exceptional corrosion resistance and are widely used in chemical processing industries. The reliable performance of these alloys under extreme industrial conditions, are generally attributed to the presence of a passive film on the alloy surface. O2 reduction is the most likely cathodic process able to sustain metal oxidation (corrosion) in industrial environments. However, the kinetics of O2 reduction on these oxide-covered alloys has hardly been studied, despite the possibility it may be the rate controlling process for corrosion, especially localized corrosion. The objectives of this research are to characterize the properties of the oxide film on Ni-Cr-Mo alloys, and to investigate whether O2 reduction occurs on oxide-covered surfaces, and, if it does, the conditions under which it occurs and the mechanism of the reaction. Various surface analytical techniques such as angle-resolved X-ray photoelectron spectroscopy (XPS), synchrotron radiation XPS (SR-XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and SEM are employed to characterize the properties of oxide film on Ni-Cr-Mo alloys as a function of applied potential, temperature and pH. The presence of a layered structure in the passive film (