登入選單
返回Google圖書搜尋
註釋To create high energy density matter and fusion conditions, high-power drivers, such as lasers, ion beams, and x-ray drivers, are employed to heat targets with pulses short compared to hydro-motion. Both high energy density physics and ion-driven inertial fusion require the simultaneous transverse and longitudinal compression of an ion beam to achieve high intensities. We have previously studied the effects of plasma neutralization for transverse beam compression. The scaled experiment, the Neutralized Transport Experiment (NTX), demonstrated that an initially un-neutralized beam can be compressed transversely to (almost equal to)1 mm radius when charge neutralization by background plasma electrons is provided. Here we report longitudinal compression of a velocity-tailored, intense, neutralized 25 mA K+ beam at 300 keV. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity tilt that longitudinally compresses the neutralized beam, enhances the beam peak current by a factor of 50 and produces a pulse duration of about 3 ns. The Physics of longitudinal compression, experimental procedure, and the results of the compression experiments are presented.