登入
選單
返回
Google圖書搜尋
US Heavy Ion Beam Research for Energy Density Physics Applicationsand Fusion
J. E. Coleman
W. W. Lee
R. C. Davidson
A. Friedman
D. V. Rose
R. H. Cohen
R. J. Briggs
E. P. Lee
W. M. Sharp
B. G. Logan
J. J. Barnard
S. S. Yu
J. W. Kwan
C. L. Olson
A. W. Molvik
P. K. Roy
D. R. Welch
W. R. Meier
D. P. Grote
G. A. Westenskow
S. M. Lund
M. Tabak
H. Qin
S. Eylon
E. Henestroza
M. Leitner
C. M. Celata
P. A. Seidl
J. S. Wurtele
L. R. Grisham
F. M. Bieniosek
E. A. Startsev
I. D. Kaganovich
G. E. Penn
E. P. Gilson
J-L. Vay
A. Sefkow
M. Kireeff Covo
C. Thoma
C. S. Debonnel
Callahan D. A.
P. C. Efthimiom
W. L. Wadron
出版
Lawrence Berkeley National Laboratory
, 2005
URL
http://books.google.com.hk/books?id=pqN4AQAACAAJ&hl=&source=gbs_api
註釋
Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers.